1 июня 2009

Механизмы адаптации сердца к мышечной работе

Систематическая мышечная работа приводит к изменению функциональных свойств и структуры сердечной мышцы. По современным представлениям, в основе структурных изменений лежит стимулирующее воздействие тренировки на генетический аппарат мышечных клеток сердца. Истощение энергетического» материала клеток и прежде всего АТФ оставляет след в генетическом аппарате клетки. Результатом этого является усиление синтеза белковых структур клеточных элементов, как сократительных, так и энергетических (митохондриальных).

Если истощение превышает физиологические нормы, может наступить перенапряжение, срыв адаптации. Моделью подобного срыва адаптации может служить больное сердце, работающее с постоянной нагрузкой. Так, при сужении аорты и затруднении оттока крови возникает стойкая гиперфункция.

При этом в 2,5 — 3 раза возрастает, интенсивность функционирования единицы сердечной массы (аварийная стадия по Ф. З. Меерсону). Компенсация аварийной стадии идет стремительно: в течение нескольких суток масса сердца увеличивается на 50 — 80%, а к концу аварийной стадии — в 1,5 — 2 раза. В гипертрофированном сердце снижается функциональная нагрузка на единицу массы сердца, наступает стадия компенсаторной гипертрофии сердца.

Быстро развивающаяся гипертрофия сердца опережает рост симпатических аксонов. Иначе говоря, падает плотность симпатической иннервации. Концентрация симпатического медиатора — норадреналина — падает в 3 — 5 раз. Отстает от темпов увеличения сердечной мышцы и развитие капиллярной сети. Если в нормальном сердце в покое раскрыта примерно половина капилляров сердечной мышцы, то в гипертрофированном — около 75%.

Число капилляров на единицу массы сердца в стадии компенсаторной гипертрофии уменьшено примерно в два раза. Быстрый рост мышечных клеток приводит к нарушению структурных элементов клеточной оболочки. Вследствие этого нарушается обмен кальция, локализованного в трубочках саркоплазматической сети. Число клеточных энергетических машин на единицу сердечной массы уменьшается. Это неизбежно приводит к ухудшению аэробного обмена.

«Физиология человека», Н.А. Фомин

Читайте далее:





Скорость и объем кровотока. В результате сокращения сердца кровь нагнетается в сосудистое русло. Движение крови по сосудам подчиняется законам гидродинамики. Однако в силу эластичности сосудов и резких перепадов давления крови на сосудистые стенки во время сокращения и расслабления сердца эти законы приобретают в организме новое, более сложное содержание. Кровь движется по артериям непрерывно, хотя сердце…

Объемная скорость движения крови по сосудам зависит от разности давлений в начале и в конце сосуда, сопротивления току крови, а также от вязкости крови. В соответствии с законами гидродинамики объемная скорость тока жидкости выражается уравнением: Q=P1 — P2/R, где Q — объем жидкости, P1 — P2 — разность давлений в начале и в конце трубы,…

Фазы сердечной деятельности

Схема строения сердца и направления движения крови в сердечных полостях: 1 — дуга аорты; 2 — верхняя полая вена; 3 — правое легкое; 4 — полулунный клапан; 5 — правое предсердие; 6 — венечная вена; 7 — нижняя полая вена; 8 — трехстворчатый клапан; 9 — остаток артериального протока; 10 — легочная артерия; 11 —…

Время кругооборота крови составляет в среднем 20 — 25 с, т. е. в течение 1 мин весь объем циркулирующей крови проходит по сосудам большого и малого круга 2,5 — 3 раза. Скорость кровотока и время кругооборота увеличиваются при напряженной работе. Вследствие этого возрастает минутный объем крови, т. е. объем крови, выбрасываемой сердцем в 1 мин….

Сокращение сердечной мышцы происходит в строгой последовательности, с закономерным ритмом. В сердечном цикле выделяют систолу предсердий, продолжающуюся при частоте сокращений 75 раз в 1 мин 0,04 — 0,07 с, систолу желудочков (0,3 с), диастолу желудочков (0,5 с). За 0,1 с до окончания диастолы желудочков начинается систола предсердий. Следовательно диастола предсердий продолжается 0,7 с. Совместная диастола…