Автоматия сократительной функции
Закономерный характер чередования фаз сердечного сокращения обусловлен автономной саморегулирующей системой сердца, называемой проводящей. Проводящая система сердца состоит из атипической мышечной ткани (богатые гликогеном мышечные волокна) и нервных клеток с отростками. Скопления клеток проводящей системы (водители ритма) находятся в области синоатриального узла, предсердно-желудочковой перегородки, в толще мышечных стенок левого и правого желудочков (пучки волокон Гиса).
Первичным водителем ритма является синоатриальный узел, расположенный в устье полых вен. Клетки этого узла обладают наибольшей скоростью спонтанной деполяризации (номотопный автоматизм). Отсюда возбуждение распространяется по стенке правого предсердия ко второму скоплению атипической мышечной ткани и нервных клеток — атриовентрикулярному узлу (вторичный, эктопический водитель ритма).
Из атриовентрикулярного узла в перегородку желудочков направляется толстый мышечный пучок Гиса, делящийся в желудочках на левую и правую ножки. Конечные разветвления проводящей системы сердца представлены мышечными волокнами Пуркине, анастомозирующими с сократительными волокнами сердечной мышцы. Проводящая система сердца регулирует ритмические сокращения изолированного сердца.
В специально созданных условиях можно длительно поддерживать ритмические сокращения даже отдельных клеток сердца. Самопроизвольное ритмическое сокращение изолированных клеток сердца — веский аргумент в пользу миогенной природы автоматии сердца. Эта точка зрения находит подтверждение в электрофизиологических экспериментах.
«Физиология человека», Н.А. Фомин

Электрическая активность сердца, зарегистрированная с помощью чувствительных приборов, имеет характерную картину, позволяющую судить о возбудимости, проводимости, сократительной способности сердца. Снятие электрических потенциалов сердца с поверхности тела — электрокардиография — является объективным методом изучения деятельности сердца и диагностики некоторых нарушений в его работе. Схематическое изображение связи между участками возбуждения сердечной мышцы и отдельными зубцами электрокардиограммы: I…
Регулируемая гиподинамия миокарда. Мышечная деятельность сопровождается как функциональными, так и структурными изменениями в аппарате кровообращения. Эти изменения по-разному проявляются в состоянии покоя и при мышечной работе.1У тренированных спортсменов в состоянии покоя, как правило, увеличивается продолжительность сердечного цикла, снижается частота сердечных сокращений, улучшается сократительная способность миокарда. Увеличение продолжительности сердечного цикла неодинаково проявляется в отдельных фазах систолы…

Места наложения электродов (показаны цифрами в кружках) при грудных отведениях с характерным рисунком электрокардиограммы в каждом отведении. Усиленные отведения от конечностей обозначают сочетаниями букв: aVL, aVR, aVF. Эти сочетания расшифровываются следующим образом: а — усиленное отведение; V — электрический потенциал; L — левая рука; R — правая рука; F — ноги. Например, сочетание aVL нужно…
Возрастные ограничения физических нагрузок, требующих значительного напряжения аппарата кровообращения, связаны с незавершенностью его функционального и морфологического развития. К 18 годам объем сердца юного спортсмена достигает показателей взрослых спортсменов. Однако полного морфологического и функционального совершенства сердце человека достигает только к 20 — 21 году. Возрастные изменения сердечно-сосудистого аппарата ребенка в период от 7 до 11 лет…

Места наложения электродов на грудной клетке в отведениях по Небу и в отведениях для снятия электрокардиограммы во время физической нагрузки. A, D, I — отведения по Небу (обозначены пунктиром); H1, H2 — отведения для снятия электрокардиограммы во время физической нагрузки (обозначены сплошной линией); 1, 2, 3 — точки наложения электродов. Одним из вариантов грудных отведений…