20 мая 2013

Отцовский геном в большей степени готов к оплодотворению, чем материнский

Отцовский геном в большей степени готов к оплодотворению, чем материнский

Исследователи из Онкологического центра Хантсмана (HCI) при Университете штата Юта обнаружили, что в то время как гены, предоставляемые отцом, к моменту оплодотворения предварительно уже запрограммированы и находятся в состоянии нужном эмбриону, гены, предоставляемые матерью, находятся в другом состоянии, и требуют перепрограммирования, чтобы соответствовать состоянию генов отца. Полученные данные имеют большое значение как для биологии развития, так и для биологии рака.

На самых ранних стадиях развития клетки эмбриона обладают возможностью развиться в любой тип клеток. Это состояние называется тотипотентностью. На более поздних стадиях развития эта возможность принимает ограниченный характер, что связано с процессом называемым дифференциацией. Поэтому в результате, по мере того, как клетки продолжают дифференцироваться, они дают начало только определенной подгруппе возможных типов клеток.

«При раке нормальный процесс клеточной дифференциации и роста идет неправильно, и клетки либо застревают на раннем этапе дифференциации, либо их развитие идет в обратном направлении и они оказываются перепрограммированными на возвращение к состоянию ранних эмбриональных клеток», — говорит Брэдли Р. Кэрнс, соавтор статьи и старший директор по фундаментальным наукам в HCI. «Посредством понимания того, как в норме клетки программируются на состояние тотипотентности, и как они развиваются из этого состояния в клетки определенных типов, мы надеемся лучше понять, как раковые клетки дисрегулируют этот процесс, и использовать это знание для разработки стратегий, направленных на обращение вспять процесса дирегуляции». Результаты исследования опубликованы 9 мая в онлайн версии журнала Cell в качестве главной статьи.

Ранние работы, выполненные в лаборатории Клэрнса, показали, что большинство генов, важных для руководства ранним развитием эмбриона присутствуют в сперматозоидах отца уже в «состоянии готовности» — они выключены, но снабжены маркерами, которые облегчают активацию генов. «Логика в том, что все гены, принимающие важные решения на ранней стадии развития, готовы к действиям», — говорит Кэрнс. «Это состояние готовности никогда не наблюдается в полностью дифференцированных клетках, таких как клетки кожи».

В настоящем исследовании ученые из лаборатории Кэрнса использовали метод секвенирования с высокой пропускной способностью и всесторонне и точно проанализировали схемы метилирования ДНК в геномах рыбок данио, которые являются распространенной моделью, используемой в ходе исследований как в области биологии развития, так и в области биологии рака. Они изучили яйцеклетки, сперматозоиды, и четыре стадии развития эмбриона: три стадии между оплодотворением и моментом, когда геном эмбриона становится активным, и одну стадию, следующую за этим моментом. Метилирование – в процессе которого молекулы называемые метил группами избирательно прикрепляются к определенным областям ДНК и выключают активность генов в этих областях – является одним из основных маркеров перехода генов в состоянии готовности; в генах в состоянии готовности ДНК метилирование отсутствует, делая возможной их активность позднее, в ходе развития эмбриона.

Исследовательская группа Кэрна выяснила, что схема метилирования эмбриона, клетки которого почти готовы к дифференциации, идентична той, что наблюдается в сперматозоиде. В отличие от этого, схема яйцеклетки изначально сильно отличается, однако претерпевает ряд разительных изменений, чтобы в точности соответствовать схеме в ДНК сперматозоида. Работа Кэрна позволяет предположить, что ДНК яйцеклетки подвергается этому масштабному перепрограммированию, чтобы подготовиться к процессу дифференциации. «Материнские гены, которые подвергаются перепрограммированию метилированием ДНК, являются одними из наиболее важных локусов, определяющих развитие эмбриона», — говорит Кэрнс. «К примеру, многие hox-гены, которые определяют план строения тела, а также дифференциацию во время гемопоэза (формирования клеток крови), метилированы в материнском генетическом вкладе и деметилированы в отцовском, а, следовательно, и в эмбрионе».

По словам Кэрнса, эта работа связана с еще одним интересным открытием. «Мы обнаружили, что материнский геном заботится о своей реконструкции самостоятельно, не используя в качестве образца отцовский геном». Эксперименты Кэрнса показали, что если отцовский генетический вклад удалить, материнский геном по-прежнему реконструируется до нужного состояния.

«В сущности, мы пытаемся понять, как отдельная клетка может принимать решение быть клеткой какого-либо типа», — говорит Кэрнс. «Это интереснейший фундаментальный вопрос биологии, который имеет значение для всех аспектов развития и многих аспектов таких заболеваний как рак».


Источник:
sciencedaily.com



Состояния, сопутствующие легкой форме COVID-19

Венское исследование MedUni предоставляет новую информацию для лучшего понимания болезни и потенциальных биомаркеров для разработки вакцины. В исследовании, недавно опубликованном в ведущем журнале Allergy, группа ученых MedUni Vienna под руководством иммунолога Винфрида Ф. Пикла и аллерголога Рудольфа Валента (оба из Центра патофизиологии, инфектиологии и иммунологии) показала, что существует семь «форм болезней» при COVID-19 с легким…

Апигенин снижает когнитивные нарушения в мышиной модели синдрома Дауна

У мышей, получавших апигенин, были лучшие показатели памяти и вехи развития. Согласно исследованию, проведенному учеными из Национального института здравоохранения и других учреждений, растительное соединение апигенин улучшило когнитивные нарушения и дефицит памяти, обычно наблюдаемые на мышах с синдромом Дауна. Апигенин содержится в цветках ромашки, петрушке, сельдерее, мяте перечной и цитрусовых. Исследователи скармливали соединение беременным мышам, несущим…

Как иммунная система обнаруживает скрытых «злоумышленников»?

Исследования, проведенные доцентом Техасского университета A&M Вонмуком Хвангом, привели к лучшему пониманию того, как компоненты иммунной системы организма находят вторгшиеся или поврежденные клетки, что может привести к новым подходам к лечению вирусов и рака. Хван, доцент кафедры биомедицинской инженерии Техасского университета A&M, написал об этом в статье, недавно опубликованной в журнале Proceedings of the National…

Прорыв в регенеративной стоматологии

Новые знания о клеточном составе и росте зубов могут ускорить развитие регенеративной стоматологии — биологической терапии поврежденных зубов, а также лечения чувствительности зубов. Исследование, проведенное учеными из Каролинского института, опубликовано в Nature Communications. Зубы развиваются в результате сложного процесса, в котором мягкие ткани с соединительной тканью, нервами и кровеносными сосудами соединяются с тремя различными типами…

Долгосрочные неврологические последствия COVID-19

Готов ли мир к волне неврологических последствий, которые могут возникнуть в результате COVID-19? Этот вопрос находится в авангарде исследований, проводимых в Институте неврологии и психического здоровья Флори. Команда нейробиологов и клиницистов изучает потенциальную связь между COVID-19 и повышенным риском болезни Паркинсона, а также меры, чтобы опередить кривую. «Хотя ученые все еще изучают, как вирус SARS-CoV-2…