Жидкость клеток
Жидкость клеток (в том числе и клеток крови), плазма и тканевая вода различны по составу органических компонентов и по количеству осмотически активных катионов, анионов, а также по их суммарному количеству. Скорость обмена воды через разделяющие эти секторы мембраны превышает скорость обмена основных ионов.
Этот факт ограничивает прежнее представление о ведущей роли электролитов в поддержании равновесия жидкостного состава в системе «кровь — ткань — лимфа» и свидетельствует о значимости механизмов активного трансмембранного массопереноса.
Кровообращение, массоперенос из крови в ткань, движение жидкости в тканях, а также лимфодинамика являются звеньями единой системы гуморального транспорта. Эта система наряду с другими функциональными системами обеспечивает не только метаболизм тканей и клеток, но и согласование функций целостного организма.
Механизм транспорта воды в звене «капилляр ↔ ткань» достаточно подробно освещен [Газенко О. Г., 1981; Куприянов В. В. и др., 1982]. Поэтому мы рассмотрим лишь те аспекты проблемы, которые имеют непосредственное значение для понимания роли свертываемости и фибринолиза в гуморальном транспорте.
Принято различать следующие виды транспорта через сосудисто-тканевые барьеры: ультрафильтрацию (движение из крови в ткань), реабсорбцию (движение из ткани в кровь), диффузию и везикулярный перенос (микропиноцитоз).
«Инфаркт миокарда», Я.Д.Мамедов
Образование тканевой жидкости и лимфы математически обосновал еще Е. Н. Starling (1896). Предложенная им формула уточнялась многими авторами. Некоторые частные положения признаны неверными [Караганов Я. Л. и др., 1978]. Однако ключевые силы образования тканевой жидкости и лимфы, суммированные в модифицированной формуле Старлинга, позволяют не только понять их взаимоотношение, но и выявить возможные пути воздействия на…
В патологических условиях (в том числе и связанных с коагуляцией в кровеносных и лимфатических капиллярах) часть микрососудов оказывается блокированной. Такая ситуация типична для диссеминированных микротромбозов, а также для тромбоза более крупных сосудов. В последнем случае блокированными (частично или полностью) оказываются кровеносные и лимфатические капилляры стенок сосудов и тканей, входящих в зону тромбоза или примыкающей к…
Одна из сил, определяющих фильтрацию — капиллярное давление (Ос), величина чрезвычайно изменчивая: 10 — 30 мм рт. ст. в одной ткани. Часть нормально функционирующих капилляров, как известно, периодически вообще выключается из циркуляции. Некоторые авторы считают, что в эти периоды происходит так называемая обратная фильтрация: из ткани в капилляры. Рост венозного давления усиливает образование тканевой жидкости….
Различают два крайних варианта фильтрации белка из крови в ткань. При Кос = 0 (стенка капилляров свободно пропускает белок) фильтрация белка и жидкости происходит параллельно. При Кос = 1 белок не переходит из капилляра в ткань, как бы ни возрастала фильтрация. В динамике увеличения Кос от 0 до 1 соответственно уменьшается проникновение белка из крови….
Коэффициент фильтрации стенки лимфатического капилляра (Кфл) высок во время фазы наполнения. Он низок во время фазы продвижения лимфы, если «входные клапаны» не повреждены. Коллоидно-осмотическое давление в лимфатическом сосуде (Ол) во время открытия входных клапанов равно коллоидно-осмотическому давлению ткани (От), т. е. Кол = 0. Вопрос о фильтрации воды из лимфатического сосуда в ткань и о…