3 июня 2009

Свойство облегчения проведения и окклюзии нервного импульса

Свойство облегчения проведения и окклюзии нервного импульса — результат конвергенции (схождения) нервных импульсов от разных аксонов к одной нервной клетке. Для генерации нервного импульса может быть недостаточно возбуждения, поступающего к нервной клетке по отростку одного аксона. В этом случае возбуждение от другого аксона, поступающее к той же нервной клетке, облегчает генерацию нервного импульса.

К нервной клетке могут подходить несколько аксонов и каждый из них в отдельности может вызвать возбуждение. При одновременном их возбуждении некоторые сигналы, направляющиеся к нервной клетке, оказываются закупоренными, не находящими выхода на эффекторный аппарат. Разумеется, это лишь общая схема возможного взаимодействия возбуждении, поступающих от разных нервных проводников к одной нервной а клетке. В действительности же, когда к одной клетке сходятся возбуждающие или тормозные влияния сотен и тысяч нервных отростков, суммация и окклюзия становятся чисто статистическими явлениями.

Трансформация ритма является результатом своеобразного усреднения частых и слабых по силе афферентных нервных сигналов, на которые формируются более редкие эфферентные импульсы. Значительно реже в нервном центре возникает залп импульсов в ответ на одиночный импульс.

Последействие — длительное возбуждение, результат циркуляции нервного импульса по замкнутым нейронным цепям. Условия для подобной циркуляции особенно благоприятны в некоторых отделах нервной системы, например в лимбическом отделе головного мозга.

«Физиология человека», Н.А. Фомин

Читайте далее:





Гладкий тетанус не имеет и кратковременных периодов расслабления. В экспериментальных условиях гладкий тетанус может быть получен при интервалах между двумя смежными стимулами, равными или незначительно превышающими длительность абсолютной рефрактерной фазы. Для получения зубчатого тетануса необходимы более длительные интервалы между следующими друг за другом раздражающими стимулами. Этот интервал должен быть не меньшим, чем время от начала…

Сила сокращения мышцы зависит от целого ряда факторов. Наиболее важными из них являются величина физиологического поперечника мышцы, число нервно-мышечных единиц, вовлекаемых в работу, микро- и макроструктура мышц. Предварительно растянутая мышца укорачивается на большую величину. Одиночное мышечное волокно развивает усилие до 100 — 200 мг. Чем больше суммарное поперечное сечение всех входящих в мышцу мышечных волокон…

Работоспособность мышцы определяется количеством выполненной работы и численно равна произведению массы перемещаемого груза на высоту. При увеличении отягощения снижается высота, на которую может быть поднят груз. Суммарная работоспособность достигается при средних отягощениях (закон оптимальных нагрузок). В сокращении гладких мышц имеются существенные отличия от функции скелетных, поперечнополосатых мышц. Волна сокращения распространяется со скоростью от 10 —…

Сокращение и расслабление мышцы осуществляется за счет потенциальной химической энергии, которая освобождается при расщеплении богатых энергией органических веществ. В организме животного такими источниками энергии являются аденозинтрифосфорная (АТФ) и креатинфосфорная (КрФ) кислоты, а также углеводы, белки и жиры, входящие в состав пищевых веществ. Первичным источником химической энергии, трансформируемой в механическую энергию мышечного сокращения, является АТФ. При…

Химизм и механизм мышечного сокращения (Химические превращения)

Схема взаимного расположения поверхности мембраны (1), поперечных трубочек (2), саркоплазматического ретикулума (3) и микрофибрилл (4) в скелетном мышечном волокне: А — анизотропный диск; I — изотропный диск; Z — мембрана актиновых нитей. Химические превращения, в ходе которых происходит сокращение мышцы, к настоящему времени изучены достаточно хорошо. Однако далеко не полностью даны ответы на вопросы: почему…