3 июня 2009

Способность возбудимых тканей отвечать на действие раздражителя

Способность возбудимых тканей отвечать на действие раздражителя с определенной частотой, обусловленная скоростью процесса возбуждения, характеризует функциональную подвижность, или лабильность. Мерой функциональной подвижности может служить максимальный ритм возбуждения. Высокая частота раздражений приводит к падению лабильности. Однако можно подобрать некоторые средние, так называемые оптимальные ритмы раздражения, которые обеспечивают длительную работу возбудимого субстрата, без снижения ее эффективности.

Максимальные ритмы активности неодинаковы для разных тканей. Так, если чувствительные волокна слухового нерва воспроизводят до 1000 имп/с, то нервно-мышечный синапс — не более 100 имп/с. Следовательно, если на нервно-мышечный препарат подавать раздражения с частотой выше 100 имп/с, то в синапсе будет происходить трансформация ритма. Иначе говоря, часть импульсов, возникающих в нерве, не будет проходить к мышце.

Пессимальные частоты раздражений приходят к мышечному волокну трансформированными. Поэтому, несмотря на очевидный факт увеличения энергии раздражающего действия, ответная реакция не только не повышается, а даже падает.

Если на участок нерва, через который проходит возбуждение, подействовать каким-либо раздражителем, вызывающим альтерацию (повреждение), то способность нерва к проведению волны возбуждения меняется. Это явление впервые обнаружил Н. Е. Введенский (1886).

«Физиология человека», Н.А. Фомин

Читайте далее:



Сократительная функция скелетных мышц

Макро- и микроструктура поперечнополосатой мышцы: А1 — мышечное волокно; Б — схема строения миофибриллы; В — схема строения участка поперечнополосатой мышцы; 1 — мышечное волокно; 2 — участок мышечного волокна; 3 — миофибрилла; 4 — протофибриллы; Г — поперечные мостики между тонкими и толстыми протофибриллами; А — анизотропный диск; I — изотропный диск; Z —…

Современные представления о природе торможения в нервных центрах сводятся преимущественно к признанию его как специфической формы нервной активности. Это означает, что торможение является не результатом конфликта возбуждений (перевозбуждения), а первичным нервным процессом. Различают постсинаптическое (прямое и возвратное) и пресинаптическое торможение (торможение на пресинаптических терминалях). Прямое торможение является результатом гиперполяризации постсинаптической мембраны. Вследствие этого нервный импульс…

На кривой записи одиночного сокращения можно выделить следующие периоды: скрытый период — время от начала действия раздражителя до начала видимого сокращения; период сокращения — от начала до вершины кривой; период расслабления — от вершины кривой до исходной длины мышцы. При средней длительности одиночного сокращения икроножной мышцы лягушки, равной 0,1 с, скрытый период составляет около 0,01…

Гладкий тетанус не имеет и кратковременных периодов расслабления. В экспериментальных условиях гладкий тетанус может быть получен при интервалах между двумя смежными стимулами, равными или незначительно превышающими длительность абсолютной рефрактерной фазы. Для получения зубчатого тетануса необходимы более длительные интервалы между следующими друг за другом раздражающими стимулами. Этот интервал должен быть не меньшим, чем время от начала…

Сила сокращения мышцы зависит от целого ряда факторов. Наиболее важными из них являются величина физиологического поперечника мышцы, число нервно-мышечных единиц, вовлекаемых в работу, микро- и макроструктура мышц. Предварительно растянутая мышца укорачивается на большую величину. Одиночное мышечное волокно развивает усилие до 100 — 200 мг. Чем больше суммарное поперечное сечение всех входящих в мышцу мышечных волокон…