3 июля 2009

Функциональное мертвое пространство

Измерить объем мертвого пространства можно также методом Бора. Вдыхаемый СO2 поступает из альвеолярного воздуха, а не из воздуха мертвого пространства. Отсюда

VT*FE = VA*FA.

Поскольку т.е. VT=VA+VD,

VA=VT-VD,

после подстановки получаем

VD/VT=(FA-FE)/FA

следовательно,

VT*FE=(VT-VD)*FA,

Парциальное давление газа пропорционально его содержанию. При спокойном дыхании отношение объема мертвого пространства к дыхательному объему в норме равно 0,2—0,35. У здоровых людей РCO2 в альвеолярном воздухе и артериальной крови практически одинаковы, поэтому мы можем записать уравнение Бора следующим образом:

VD/VT=(PaCO2~PECO2)/PaCO2

Необходимо подчеркнуть, что методами Фаулера и Бора измеряют несколько различные показатели. Первый метод дает объем проводящих дыхательных путей вплоть до того уровня, где поступающий при вдохе воздух быстро смешивается с уже находившимся в легких. Этот объем зависит от геометрии быстро ветвящихся с увеличением суммарного сечения дыхательных путей и отражает строение респираторной системы. В связи с этим его называют анатомическим мертвым пространством.

По методу же Бора определяется объем тех отделов легких, в которых не происходит удаление СО2 из крови, поскольку этот показатель связан с работой органа, он называется функциональным (физиологическим) мертвым пространством. У здоровых лиц эти объемы практически одинаковы. Однако у больных с поражениями легких второй показатель может значительно превышать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких.

«Физиология дыхания», Дж. Уэст

Читайте далее:



Регионарные различия вентиляции легких

До сих пор мы допускали, что вентиляция всех участков здоровых легких одинакова. Однако было обнаружено, что их нижние отделы вентилируются лучше верхних. Показать это можно, попросив обследуемого вдохнуть газовую смесь с радиоактивным ксеноном. Когда 133Хе поступает в легкие, испускаемая им радиация проникает через грудную клетку и улавливается закрепленными на ней счетчиками излучения. Так можно измерить…

Как воздух поступает в альвеолы

В этой и следующих двух главах рассмотрено, каким образом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обеспечиваются соответственно вентиляцией, диффузией и кровотоком. Приведены типичные значения объемов и расходов воздуха и крови. На практике эти величины существенно варьируют (по J….

Легочные объемы

Перед тем как перейти к динамическим показателям вентиляции, полезно коротко рассмотреть «статические» легочные объемы. Некоторые из них можно измерить с помощью спирометра. Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда колебаний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает максимально глубокий вдох, а затем — как можно более глубокий…

Легочные объемы (функциональная остаточная емкость)

Функциональную остаточную емкость (ФОЕ) можно измерить также с помощью общего плетизмографа. Он представляет собой крупную герметичную камеру, напоминающую кабинку телефона-автомата, с обследуемым внутри. В конце нормального выдоха с помоагью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При попытке вдоха газовая смесь в его легких расширяется, объем их увеличивается,…

Вентиляция

Предположим, что при каждом выдохе из легких удаляется 500 мл воздуха и что в минуту совершается 15 дыхательных движений. В этом случае общий объем, выдыхаемый за 1 мин, равен 500*15 = 7500 мл/мин. Это так называемая общая вентиляция, или минутный объем дыхания. Объем воздуха, поступающего в легкие, несколько больше, так как поглощение кислорода слегка превышает…