30 марта 2009

Структура молекул глюкагона

В отличие от инсулина, имеющего относительно ригидную структуру, определяющую нужное для рецепторного связывания трехмерное расположение аминокислот, молекула глюкагона обладает удлиненной и чрезвычайно гибкой структурой. Подобно инсулину молекулы глюкагона легко агрегируют под действием гидрофобных связей, образуя в этом случае трехмерную структуру.
При тех низких концентрациях глюкагона, которые присутствуют в крови, этот гормон, вероятно, циркулирует в виде мономера, имеющего случайную конформацию. Предполагают, что биологически активной конформацией является спиральная структура, взаимодействующая с рецептором двумя гидрофобными участками, расположенными на каждом конце спирали, и что для активации аденилатциклазы существенное значение имеет крупная аминоконцевая часть молекулы.

Эти наблюдения свидетельствуют о том, что молекулы как инсулина, так и глюкагона в процессе отложения в гранулах ассоциируются с помощью своих гидрофобных участков; связывание их с рецепторами также определяется преимущественно гидрофобными взаимодействиями. Существование двух гидрофобных участков, впервые обнаруженное в мономере глюкагона, было отмечено и в молекулах секретина и вазоактивного интестинального пептида.

Некоторые меньшие по размерам молекулы, такие, как тиротропинрилизинг гормон, рилизинггормон лютеинизирующего гормона, ангиотензин II и брадикинин, также обладают двойной симметрией. Это позволило предположить, что симметричные свойства пептидных последовательностей отражаются в структуре рецепторов и что такие пептиды связываются с двумя сходными или идентичными субъединицами рецептора.

«Эндокринология и метаболизм», Ф.Фелиг, Д.Бакстер



Для проявления биологических эффектов стероидных гормонов необходимо взаимодействие активированных цитоплазматических гормонрецепторных комплексов с ядрами клетокмишеней. Активированный стероидрецепторный комплекс приобретает способность связываться с хроматином, равно как и с ДНК и другими полианионами, и накапливаться в ядре. Данные о присутствии в ядре, так же как в цитоплазме нестимулированных клеток свободных эстрогеновых рецепторов, свидетельствуют о том, что они…

Эстрадиолрецепторный комплекс можно экстрагировать из ядер матки в комбинации с рибонуклеопротеидом, а активированные стероидрецепторные комплексы прочно связаны с ядерными гистонами и основными негистоновыми белками ядра. Таким образом, как ядерные белки, так и ДНК, по-видимому, принимают участие в процессе связывания хроматином, который протекает, очевидно, как в нуклеосомах, так и в промежуточных участках хроматина, доступных для нуклеазного…

После этапа активации, обусловливаемого взаимодействием стероидных гормонов с их специфическими внутриклеточными рецепторными белками, гормонрецепторные комплексы приобретают способность быстро связываться с хроматином и влиять на транскрипцию специфических молекул мРНК. Отдельные белки, синтез которых, как было установлено, индуцируется действием стероидных гормонов на образование яРНК. По всей вероятности, будет показано, что многие другие белки, о которых известно, что…

После регресса первичной реакции на эстроген повторное воздействие эстрогеном или прогестероном вызывает в яйцеводе быстрое увеличение продукции мРНК, контролирующих синтез специфических «экспортируемых» белков, в том числе овальбумина и кональбумина. Скорость синтеза овальбуминовой мРНК, регистрируемая либо путем трансляции in vitro, либо с помощью гибридизации с комплементарной ДНК (кДНК), после введения эстрогена быстро увеличивается и тесно коррелирует…

Гормонрецепторные комплексы оказывают прямое воздействие на активность РНКполимеразы в изолированных ядрах, а также на матричную функцию хроматина клетокмишеней. Эстрогены и андрогены стимулируют активность ядрышковой [I] и нуклеоплазменной [II] РНКполимераз в соответствующих клеткахмишенях (матке и предстательной железе), а прогестеронрецепторные комплексы повышают матричную активность хроматина из яйцеводов цыплят, но не из тканей, не являющихся мишенями для прогестерона….