27 марта 2009

Разделение белков по клеточным пространствам после синтеза

Разделение белков по клеточным пространствам после синтеза уже много лет привлекает внимание специалистов в области клеточной биологии. Установлено, что типичная эукариотическая клетка за определенное время в процессе цикла синтезирует около 50 000 различных белков. Современные данные свидетельствуют о том, что это множество производимых клеткой различных белков синтезируется общим пулом полирибосом. Каждый вид синтезированных белков направляется в специальное место, где проявляется его специфическая биологическая функция.

Например, особые группы белков транспортируются в ядро и другие субклеточные органеллы, где они выполняют функции либо регуляторных белков, либо ферментов, либо структурных белков, участвующих в биогенезе различных органелл, тогда как другие группы белков синтезируются специально на экспорт из клетки (иммуноглобулины, факторы свертывания крови, сывороточный альбумин и белковые или пептидные гормоны). Понятно, что силы, принимающие участие в этом процессе направленного транспорта белков, должны определяться очень сложным сочетанием информационных сигналов.

Другими словами, поскольку информация для этого процесса транслокации может заключаться только во всей, либо в части первичной структуры или в конформационных свойствах самого белка, то посттрансляционная модификация может играть решающую роль в определении белковой функции. Как только вновь синтезированный белок высвобождается из комплекса мРНК — рибосома — образующаяся цепь, дальнейшая регуляторная роль РНК представляется совершенно невероятной.

Другая проблема, стоящая перед исследователями, работающими в области биосинтеза полипептидных гормонов, заключается в том, каким образом регулируются биосинтетические и секреторные процессы.

Исследования регуляторных механизмов ведутся в двух направлениях:

  • изучение природы клеточных механизмов, — участвующих в сопряжении внеклеточных регуляторных стимулов с внутриклеточными процессами, определяющими изменения образования и высвобождения гормонов;
  • определение стадии синтеза белка, на которую направлена регуляция, т. е. выяснение происходит она на транскрипционном (и претрансляционном), трансляционном или посттрансляционном уровне.

Типичные продуцирующие белковые гормоны эндокринные клетки, в которых видны субклеточные органеллы.

«Эндокринология и метаболизм», Ф.Фелиг, Д.Бакстер





В начале века впервые был обнаружен и назван витамином D жирорастворимый фактор, содержащийся в печеночной ткани животных и рыб и обладающий способностью излечивать рахит. Позднее было показано, что аналогичный антирахитический фактор может образовываться в коже млекопитающих и в некоторых растениях (зерновые, бобовые) под влиянием ультрафиолетовых лучей. Это открытие означало, что данный фактор не является витамином…

Субстратом синтеза 7дегидрохолестерина — «провитамина» служит ацетилСоА. Ультрафиолетовый фотолиз провитамина приводит к образованию 6,7цис изомера, называемого «провитамин D3» (преD3). Этот изомер под действием температуры превращается в коже в витамин D3. Аналогичная группа реакций наблюдается и при образовании витамина D2 (эргокальциферол) из провитамина эргостерола. Витамины В3 и Da затем транспортируются на специфических, связывающих витамин D, белках…

Механизм действия 1,25(OH)2D, очевидно, сходен с механизмом действия надпочечниковых и половых стероидов тем, что в нем участвует связывание дигидроксилированного витамина с цитозольными рецепторными белками. Витаминорецепторный комплекс затем транслоцируется в ядро, в котором он стимулирует синтез РНК и в результате синтез связывающих и/или транспортирующих кальций белков. Современные данные убедительно свидетельствуют о том, что 1,25(OH)2D является конечной…

Биосинтетический путь образования биологически активного витамина D через последовательные реакции гидроксилирования отличается от пути образования стероидных гормонов надпочечников по крайней мере одним интересным аспектом. Все ферментативные стадии, необходимые для гидроксилирования и синтеза стероидных гормонов надпочечников, происходят в одном и том же органе — коре надпочечников, и в одной и той же клетке коры, хотя и…

Главная регулируемая стадия биосинтеза витамина D локализуется на уровне превращения 25OHD в 1,25 (ОН)2D под влиянием 1гидроксилазы 25OHD в почках. Биосинтез витамина может в какойто степени регулироваться и на уровне 25гидроксилирования в печени, а также на уровне превращения провитамина D в витамин D в коже, но общее значение этих регуляторных этапов не выяснено. С физиологической…