Механизмы гуморального транспорта в тканях

Состав и распределение жидкостей в человеческом организме в литератур освещены достаточно подробно. Прекрасную сводку таких данных собрал Н. В. Семенов (1971). Рассмотрены общие и частные закономерности изменения в водных средах при патологии [Алексеев М. С., 1980; Лужников Е. А. и др., 1980], роль нарушений мембранной проницаемости [Газенко О. Г., 1981].

Поэтому нет необходимости приводить многие подробности. Э. Лайтфут (1977) дает следующие цифры содержания воды в человеческом организме, рассчитанные для «стандартного» 30-летнего мужчины массой 68 кг, ростом 186 см. Общее количество воды составляет 75% массы тела.

Из них: внеклеточная жидкость и лимфа — 30% (20,4 л), внутриклеточная жидкость — 40% (27,2 л), плазма крови — 5% (3,4 л). В то же время у разных людей содержание воды колеблется от 45 до 78% и зависит от многих факторов, но прежде всего от степени накопления жира. Общая масса крови составляет 69 — 78 мл/кг. Ее суточный кругооборот превышает 700 л/кг, обеспечивая транспорт около 3 л/кг жидкости из крови в ткани.

При расчете на массу целого организма установлено, что за сутки сердце выбрасывает в аорту около 7 — 9 тыс. л крови. Через стенки капилляров за это время проходит около 200 л жидкости. Из них основная доля приходится на почки. Примерно 20 л транспортируется из крови в ткань во всех остальных органах, 14 — 19 л из этих двадцати возвращаются в капиллярное русло, 1 — 6 л попадает в кровь через лимфатическую систему [Landis Е. М., Pappenheimer J., 1963].

На долю сердца приходится 100 — 300 мл/сутки; согласно другим данным, кровь и интерстициальный сектор за каждые 20 мин обмениваются объемом воды, равным массе тела человека.

«Инфаркт миокарда», Я.Д.Мамедов

Одна из сил, определяющих фильтрацию — капиллярное давление (Ос), величина чрезвычайно изменчивая: 10 — 30 мм рт. ст. в одной ткани. Часть нормально функционирующих капилляров, как известно, периодически вообще выключается из циркуляции. Некоторые авторы считают, что в эти периоды происходит так называемая обратная фильтрация: из ткани в капилляры. Рост венозного давления усиливает образование тканевой жидкости….

Различают два крайних варианта фильтрации белка из крови в ткань. При Кос = 0 (стенка капилляров свободно пропускает белок) фильтрация белка и жидкости происходит параллельно. При Кос = 1 белок не переходит из капилляра в ткань, как бы ни возрастала фильтрация. В динамике увеличения Кос от 0 до 1 соответственно уменьшается проникновение белка из крови….

Коэффициент фильтрации стенки лимфатического капилляра (Кфл) высок во время фазы наполнения. Он низок во время фазы продвижения лимфы, если «входные клапаны» не повреждены. Коллоидно-осмотическое давление в лимфатическом сосуде (Ол) во время открытия входных клапанов равно коллоидно-осмотическому давлению ткани (От), т. е. Кол = 0. Вопрос о фильтрации воды из лимфатического сосуда в ткань и о…

При увеличении Пт появляется угроза индуцированного этой стимуляцией отека тканей, если Пт превышает Пл и реабсорбцию. Известно несколько механизмов, противодействующих развитию отека в органах и тканях. Основными из них считаются увеличение Пл и От и уменьшение От. Для анализа их суммарной значимости и пределов используется понятие «порог защиты от отека» (Мз). Отек развивается тогда, когда…

Еще Е. М. Landis и J. Pappenheimer (1963) определили, что за сутки 100 — 200 г белка поступает из крови в ткани и покидает их через лимфатическую систему. По данным Н. S. Mayerson (1963), у здоровых людей таким образом рециркулирует 50 — 100% всего плазменного белка. Человек весом 70 кг имеет 10,6 л экстраваскулярной жидкости,…

Один из механизмов транспорта веществ, в том числе и факторов свертывания, антисвертывания и фибринолиза из крови в ткань, как уже отмечалось, объясняет концепция «растянутой поры». Различают два крайних варианта пор — крупные и мелкие. Морфологически показано, что роль мелких пор (пропускающих вещества с молекулярной массой не более 20 000) выполняют межэндотелиальные контакты. Функцию «крупных пор»,…

Все, что сказано о транспорте молекул из крови в ткани и из тканей в лимфу, естественно, относится и к факторам, участвующим в процессах свертывания и фибринолиза. Поэтому дебатируемый еще до сих пор некоторыми исследователями вопрос о рециркуляции отдельных компонентов этой системы из крови в ткань, в лимфу и через грудной лимфатический проток обратно в кровь…

Еще недавно считалось, что свертывание крови существует для того, чтобы обеспечивать защиту организма от кровопотери при травмах. В последние десятилетия выяснилось, что система свертывания, антисвертывания и фибринолиза крови на самом деле играет более сложную роль. В 1975 г. Б. А. Кудряшов писал, что у высших позвоночных и человека функциональное значение свертывающей системы шире обычного понятия…

В построенном на этом принципе исследовании О. К. Гаврилова и соавт. (1981) развита и аргументирована концепция о системе регуляции агрегатного состояния крови (PACK). Нельзя не отметить принципиально прогрессивного характера этой концепции: она последовательно объединяет различные регуляторные уровни гемостаза в единую функциональную систему. Такое объединение, безусловно, способствует не только пониманию функции одной из важнейших систем организма,…

Жидкость клеток (в том числе и клеток крови), плазма и тканевая вода различны по составу органических компонентов и по количеству осмотически активных катионов, анионов, а также по их суммарному количеству. Скорость обмена воды через разделяющие эти секторы мембраны превышает скорость обмена основных ионов. Этот факт ограничивает прежнее представление о ведущей роли электролитов в поддержании равновесия…

Образование тканевой жидкости и лимфы математически обосновал еще Е. Н. Starling (1896). Предложенная им формула уточнялась многими авторами. Некоторые частные положения признаны неверными [Караганов Я. Л. и др., 1978]. Однако ключевые силы образования тканевой жидкости и лимфы, суммированные в модифицированной формуле Старлинга, позволяют не только понять их взаимоотношение, но и выявить возможные пути воздействия на…

В патологических условиях (в том числе и связанных с коагуляцией в кровеносных и лимфатических капиллярах) часть микрососудов оказывается блокированной. Такая ситуация типична для диссеминированных микротромбозов, а также для тромбоза более крупных сосудов. В последнем случае блокированными (частично или полностью) оказываются кровеносные и лимфатические капилляры стенок сосудов и тканей, входящих в зону тромбоза или примыкающей к…