3 июня 2009

Способность возбудимых тканей отвечать на действие раздражителя

Способность возбудимых тканей отвечать на действие раздражителя с определенной частотой, обусловленная скоростью процесса возбуждения, характеризует функциональную подвижность, или лабильность. Мерой функциональной подвижности может служить максимальный ритм возбуждения. Высокая частота раздражений приводит к падению лабильности. Однако можно подобрать некоторые средние, так называемые оптимальные ритмы раздражения, которые обеспечивают длительную работу возбудимого субстрата, без снижения ее эффективности.

Максимальные ритмы активности неодинаковы для разных тканей. Так, если чувствительные волокна слухового нерва воспроизводят до 1000 имп/с, то нервно-мышечный синапс — не более 100 имп/с. Следовательно, если на нервно-мышечный препарат подавать раздражения с частотой выше 100 имп/с, то в синапсе будет происходить трансформация ритма. Иначе говоря, часть импульсов, возникающих в нерве, не будет проходить к мышце.

Пессимальные частоты раздражений приходят к мышечному волокну трансформированными. Поэтому, несмотря на очевидный факт увеличения энергии раздражающего действия, ответная реакция не только не повышается, а даже падает.

Если на участок нерва, через который проходит возбуждение, подействовать каким-либо раздражителем, вызывающим альтерацию (повреждение), то способность нерва к проведению волны возбуждения меняется. Это явление впервые обнаружил Н. Е. Введенский (1886).

«Физиология человека», Н.А. Фомин

Читайте далее:





Сила сокращения мышцы зависит от целого ряда факторов. Наиболее важными из них являются величина физиологического поперечника мышцы, число нервно-мышечных единиц, вовлекаемых в работу, микро- и макроструктура мышц. Предварительно растянутая мышца укорачивается на большую величину. Одиночное мышечное волокно развивает усилие до 100 — 200 мг. Чем больше суммарное поперечное сечение всех входящих в мышцу мышечных волокон…

Работоспособность мышцы определяется количеством выполненной работы и численно равна произведению массы перемещаемого груза на высоту. При увеличении отягощения снижается высота, на которую может быть поднят груз. Суммарная работоспособность достигается при средних отягощениях (закон оптимальных нагрузок). В сокращении гладких мышц имеются существенные отличия от функции скелетных, поперечнополосатых мышц. Волна сокращения распространяется со скоростью от 10 —…

Сокращение и расслабление мышцы осуществляется за счет потенциальной химической энергии, которая освобождается при расщеплении богатых энергией органических веществ. В организме животного такими источниками энергии являются аденозинтрифосфорная (АТФ) и креатинфосфорная (КрФ) кислоты, а также углеводы, белки и жиры, входящие в состав пищевых веществ. Первичным источником химической энергии, трансформируемой в механическую энергию мышечного сокращения, является АТФ. При…

Химизм и механизм мышечного сокращения (Химические превращения)

Схема взаимного расположения поверхности мембраны (1), поперечных трубочек (2), саркоплазматического ретикулума (3) и микрофибрилл (4) в скелетном мышечном волокне: А — анизотропный диск; I — изотропный диск; Z — мембрана актиновых нитей. Химические превращения, в ходе которых происходит сокращение мышцы, к настоящему времени изучены достаточно хорошо. Однако далеко не полностью даны ответы на вопросы: почему…

Миозин по своим свойствам вполне отвечает требованиям, которые предъявляются к сократительному белку: он обладает достаточной прочностью, выраженными фибриллярными и эластическими свойствами, относительно большим количественным содержанием (около 40% сухого вещества мышцы). Энергия АТФ освобождается из химически связанной формы при помощи фермента аденозинтрифосфатазы, входящего в состав миозина и осуществляющего свою функцию в комплексе с мышечным белком. Несколько…