3 июня 2009

Химизм и механизм мышечного сокращения (Химические превращения)

Схема взаимного расположения поверхности мембраны (1), поперечных трубочек (2), саркоплазматического ретикулума (3) и Схема взаимного расположения поверхности мембраны микрофибрилл (4) в скелетном мышечном волокне: А — анизотропный диск; I — изотропный диск; Z — мембрана актиновых нитей.

Химические превращения, в ходе которых происходит сокращение мышцы, к настоящему времени изучены достаточно хорошо. Однако далеко не полностью даны ответы на вопросы: почему АТФ является единственным (из известных) источником энергии, трансформирующимся непосредственно в механическую энергию? Каковы механизмы этого перехода?

Процесс трансформации энергии, аккумулированной в АТФ, в механическую работу реализуется в миофибриллах. Миофибриллы состоят из толстых и тонких протофибрилл (миофиламентов). Толстые протофибриллы — это структурные единицы белка миозина, тонкие — актиновые нити. Актиновые нити прикреплены к особым белковым образованиям — Z-пластинам. Толстые миозиновые волокна лежат между актиновыми. Мембрана мышечного волокна через каждые 2 — 3 мкм втягивается между сократительными структурами, образуя сеть каналов — саркоплазматический ретикулум.

В каналах саркоплазматического ретикулума содержится избыточное количество ионов Са2+ (концентрация их в каналах примерно в 10 000 раз выше, чем в цитоплазме).

Непосредственное отношение к мышечному сокращению имеют 4 вида белков миофибрилл: миозин, актин, тропомиозин и тропонин. Они составляют около 80% всех мышечных белков.

«Физиология человека», Н.А. Фомин

Читайте далее:





Сила сокращения мышцы зависит от целого ряда факторов. Наиболее важными из них являются величина физиологического поперечника мышцы, число нервно-мышечных единиц, вовлекаемых в работу, микро- и макроструктура мышц. Предварительно растянутая мышца укорачивается на большую величину. Одиночное мышечное волокно развивает усилие до 100 — 200 мг. Чем больше суммарное поперечное сечение всех входящих в мышцу мышечных волокон…

Работоспособность мышцы определяется количеством выполненной работы и численно равна произведению массы перемещаемого груза на высоту. При увеличении отягощения снижается высота, на которую может быть поднят груз. Суммарная работоспособность достигается при средних отягощениях (закон оптимальных нагрузок). В сокращении гладких мышц имеются существенные отличия от функции скелетных, поперечнополосатых мышц. Волна сокращения распространяется со скоростью от 10 —…

Сокращение и расслабление мышцы осуществляется за счет потенциальной химической энергии, которая освобождается при расщеплении богатых энергией органических веществ. В организме животного такими источниками энергии являются аденозинтрифосфорная (АТФ) и креатинфосфорная (КрФ) кислоты, а также углеводы, белки и жиры, входящие в состав пищевых веществ. Первичным источником химической энергии, трансформируемой в механическую энергию мышечного сокращения, является АТФ. При…

Миозин по своим свойствам вполне отвечает требованиям, которые предъявляются к сократительному белку: он обладает достаточной прочностью, выраженными фибриллярными и эластическими свойствами, относительно большим количественным содержанием (около 40% сухого вещества мышцы). Энергия АТФ освобождается из химически связанной формы при помощи фермента аденозинтрифосфатазы, входящего в состав миозина и осуществляющего свою функцию в комплексе с мышечным белком. Несколько…

Основы механохимии заложили В. А. Энгельгардт и М. Н. Любимова, открывшие ферментативную активность миозина и роль АТФ в энергетике мышечного сокращения. В механизмах мышечного сокращения важная роль принадлежит электрическому полю, создаваемому ионами Са2+. Они поступают к сократительным элементам мышцы из цитоплазматических каналов мышечного волокна. Ионы Са2+ накапливаются по обе стороны Z-мембраны и, взаимодействуя с отрицательно…